The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).
Dovolená : 23. prosinec 2025 — 29. prosinec 2025
Holidays : December 23, 2025 — December 29, 2025
Vlnová rovnice
Z Multimediaexpo.cz
m (1 revizi) |
m (Nahrazení textu „</math>“ textem „\)</big>“) |
||
| (Nejsou zobrazeny 3 mezilehlé verze.) | |||
| Řádka 1: | Řádka 1: | ||
| - | {{ | + | '''Vlnová rovnice''' je významnou [[hyperbolická diferenciální rovnice|hyperbolickou]] [[parciální diferenciální rovnice|parciální diferenciální rovnicí]] druhého řádu, která popisuje celou řadu [[vlnění]], ať už v [[akustika|akustice]], [[optika|optice]], [[elektromagnetismus|elektromagnetismu]], nebo v [[mechanika|mechanice]] při popisu [[struna|strun]] nebo [[kapalina|kapalin]]. Jako vlnovou rovnici označujeme [[parciální diferenciální rovnice|rovnici]], kterou lze vyjádřit ve tvaru |
| + | [[Soubor:Wave equation 1D fixed endpoints.gif|thumb|250px|Puls na struně s upevněnými konci modelovaný jednorozměrnou vlnovou rovnicí.]] | ||
| + | :<big>\(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2} + ... + \frac{\partial^2 z}{\partial x_n^2},\)</big> | ||
| + | |||
| + | což bývá zpravidla ekvivalentně zapisováno pomocí [[Laplaceův operátor|laplaceova operátoru]] jako | ||
| + | :<big>\(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \Delta z.\)</big> | ||
| + | <big>\(z\)</big> přitom představuje skalární funkci [[poloha|polohy]] a [[čas]]u. | ||
| + | |||
| + | Pod pojmem vlnová rovnice je obvykle myšlena homogenní rovnice. V obecnějším tvaru má vlnová rovnice nehomogenní vyjádření | ||
| + | :<big>\(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \Delta z + f(x_1,x_2,...,x_n)\)</big> | ||
| + | |||
| + | Při popisu [[vlnění]] se pojem ''vlnová rovnice'' užívá k označení [[diferenciální rovnice]], která charakterizuje dynamiku daného vlnění. V takovém případě může být označení vlnová rovnice použito pro libovolnou (i [[nelineární diferenciální rovnice|nelineární]]) diferenciální rovnici. | ||
| + | |||
| + | == Související články == | ||
| + | * [[Hyperbolická diferenciální rovnice]] | ||
| + | * [[Laplaceův operátor]] | ||
| + | * [[Vlnění]] | ||
| + | * [[Sférická vlna]] | ||
| + | * [[Rovinná vlna]] | ||
| + | |||
| + | |||
| + | {{Článek z Wikipedie}} | ||
| + | [[Kategorie:Diferenciální počet]] | ||
| + | [[Kategorie:Rovnice]] | ||
| + | [[Kategorie:Vlnění]] | ||
[[Kategorie:Diferenciální počet]] | [[Kategorie:Diferenciální počet]] | ||
[[Kategorie:Rovnice]] | [[Kategorie:Rovnice]] | ||
[[Kategorie:Vlnění]] | [[Kategorie:Vlnění]] | ||
Aktuální verze z 14. 8. 2022, 14:54
Vlnová rovnice je významnou hyperbolickou parciální diferenciální rovnicí druhého řádu, která popisuje celou řadu vlnění, ať už v akustice, optice, elektromagnetismu, nebo v mechanice při popisu strun nebo kapalin. Jako vlnovou rovnici označujeme rovnici, kterou lze vyjádřit ve tvaru
- \(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2} + ... + \frac{\partial^2 z}{\partial x_n^2},\)
což bývá zpravidla ekvivalentně zapisováno pomocí laplaceova operátoru jako
- \(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \Delta z.\)
\(z\) přitom představuje skalární funkci polohy a času.
Pod pojmem vlnová rovnice je obvykle myšlena homogenní rovnice. V obecnějším tvaru má vlnová rovnice nehomogenní vyjádření
- \(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \Delta z + f(x_1,x_2,...,x_n)\)
Při popisu vlnění se pojem vlnová rovnice užívá k označení diferenciální rovnice, která charakterizuje dynamiku daného vlnění. V takovém případě může být označení vlnová rovnice použito pro libovolnou (i nelineární) diferenciální rovnici.
Související články
| Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
|---|
| Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |
