V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.

Excentricita dráhy

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Výrazné vylepšení)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 3 mezilehlé verze.)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Excentricita dráhy|700}}
+
[[File:Kepler_orbits.png|thumb|230px|Příklady trajektorií s různou excentricitou:<br />
 +
(červená)&nbsp;elipsa s excentricitou 0,7<br />(zelená)&nbsp;parabola s excentricitou 1<br />(modrá)&nbsp;hyperbola s excentricitou 1,3]]
 +
'''Excentricita dráhy''' neboli '''výstřednost''' je jedním z [[elementy dráhy|elementů dráhy]], popisujících pohyb [[kosmické těleso|kosmického tělesa]] (přirozeného, např. [[planeta|planety]], [[kometa|komety]] apod., nebo [[umělé kosmické těleso|umělého]]) v kosmickém prostoru. Vyjadřuje kruhovost, resp. nekruhovost dráhy, např. planety nebo komety.
 +
== Charakteristika ==
 +
Pro [[kružnice|kružnici]] je <big>\(e=0\)</big>, pro [[elipsa|elipsu]] <big>\(0<e<1\)</big>, pro [[Parabola (matematika)|parabolu]] <big>\(e=1\)</big> a pro [[hyperbola|hyperbolu]] <big>\(e>1\)</big>.
 +
 +
Vzorec pro výpočet excentricity eliptické dráhy je
 +
 +
:<big>\(e = \frac{\varepsilon}{a}=\frac{\sqrt{a^2-b^2}}{a}\)</big>
 +
 +
kde <big>\(\varepsilon\)</big> je lineární excentricita (vzdálenost [[ohnisko|ohniska]] od [[střed kuželosečky|středu kuželosečky]]), <big>\(a\)</big> [[Velká poloosa dráhy|velká poloosa]] a <big>\(b\)</big> [[malá poloosa]]. V&nbsp;[[kosmonautika|kosmonautice]] resp. v [[astrionika|astrionice]] je obvyklejší vztahovat excentricitu ke vzdálenostem [[apsida (astronomie)|apsid]] od těžiště soustavy
 +
 +
:<big>\(e = \frac{ R_A - R_P }{ 2 a } = \frac{ R_A - R_P }{ R_A + R_P } \)</big>,
 +
 +
kde <big>\( R_A \)</big> a <big>\( R_P \)</big> jsou vzdálenosti apoapsidy resp. periapsidy od těžiště a ''a'' je opět velká poloosa dráhy.
 +
 +
Další důležité vztahy mezi excentricitou a dalšími parametry dráhy jsou
 +
 +
:<big>\(R_P = a (1 - e)\)</big>
 +
 +
a
 +
 +
:<big>\(R_A = a (1 + e).\)</big>
 +
 +
== Související články ==
 +
* [[Geometrie]]
 +
* [[Elipsa]]
 +
 +
 +
{{Článek z Wikipedie}}
[[Kategorie:Geometrie]]
[[Kategorie:Geometrie]]
[[Kategorie:Nebeská mechanika]]
[[Kategorie:Nebeská mechanika]]
[[Kategorie:Fyzika kosmických letů]]
[[Kategorie:Fyzika kosmických letů]]

Aktuální verze z 14. 8. 2022, 14:51

Příklady trajektorií s různou excentricitou:
(červená) elipsa s excentricitou 0,7
(zelená) parabola s excentricitou 1
(modrá) hyperbola s excentricitou 1,3

Excentricita dráhy neboli výstřednost je jedním z elementů dráhy, popisujících pohyb kosmického tělesa (přirozeného, např. planety, komety apod., nebo umělého) v kosmickém prostoru. Vyjadřuje kruhovost, resp. nekruhovost dráhy, např. planety nebo komety.

Charakteristika

Pro kružnici je \(e=0\), pro elipsu \(0<e<1\), pro parabolu \(e=1\) a pro hyperbolu \(e>1\).

Vzorec pro výpočet excentricity eliptické dráhy je

\(e = \frac{\varepsilon}{a}=\frac{\sqrt{a^2-b^2}}{a}\)

kde \(\varepsilon\) je lineární excentricita (vzdálenost ohniska od středu kuželosečky), \(a\) velká poloosa a \(b\) malá poloosa. V kosmonautice resp. v astrionice je obvyklejší vztahovat excentricitu ke vzdálenostem apsid od těžiště soustavy

\(e = \frac{ R_A - R_P }{ 2 a } = \frac{ R_A - R_P }{ R_A + R_P } \),

kde \( R_A \) a \( R_P \) jsou vzdálenosti apoapsidy resp. periapsidy od těžiště a a je opět velká poloosa dráhy.

Další důležité vztahy mezi excentricitou a dalšími parametry dráhy jsou

\(R_P = a (1 - e)\)

a

\(R_A = a (1 + e).\)

Související články