Trojúhelníková nerovnost

Z Multimediaexpo.cz

Trojúhelníková nerovnost v matematice tvrdí, že součet délek dvou stran trojúhelníku není nikdy menší než délka strany třetí. Obecněji to znamená, že cesta z A do B a pak do C není kratší než cesta z A přímo do C. Tato nerovnost je větou v mnoha oblastech matematiky, např. reálných číslech, Euklidovském prostoru, Lp prostorech. Slouží jako axiom pro zavedení pojmu normovaný vektorový prostor a metrický prostor.

Obsah

Reálná a komplexní čísla

V tělese reálných a komplexních čísel platí trojúhelníková nerovnost pro absolutní hodnoty libovolných čísel \(x</math> a \(y</math> ve tvaru

\(|x + y| \leq |x| + |y|</math>

Odvození trojúhelníkové nerovnosti v reálných číslech

Pro absolutní hodnotu reálného čísla vždy platí

\(x \leq |x|</math> a zároveň

\(-x \leq |x|</math>.

Použijeme-li obě tyto nerovnosti současně pro dvě čísla \(x</math> a \(y</math> a sečteme-li je, dostáváme

\(x + y \leq |x| + |y|</math> a

\(- x - y \leq |x| + |y|</math>.

Z definice absolutní hodnoty \(|x + y|</math> víme, že může nabývat jen hodnot \(x + y</math> nebo \(- x - y</math>. Tedy kombinací posledních dvou nerovností dostáváme trojúhelníkovou nerovnost.

Normovaný vektorový prostor

V normovaném vektorovém prostoru \(V</math> s normou \(\| \cdot \|</math> má trojúhelníková nerovnost tvar

\(\|x + y\| \leq \|x\| + \|y\|</math>

pro každé dva vektory \(x</math> a \(y</math> z \(V</math>.

Lp prostory

V Lp prostorech se trojúhelníkové nerovnosti říká Minkowského nerovnost. Díky ní se ukazuje, že Lp prostory jsou normované vektorové prostory.

Metrický prostor

V metrickém prostoru \(M</math> s metrikou \(d</math> má trojúhelníková nerovnost tvar:

\(d(x,z) \leq d(x, y) + d(y,z) </math>

to jest, že vzdálenost \(x</math> a \(z</math> není větší než součet vzdálenosti z \(x</math> do \(y</math> a vzdálenosti z \(y</math> do \(z</math>.

Důsledky

Úpravou trojúhelníkové nerovnosti dostáváme jiný vhodný tvar

\(\left| |x| - |y| \right| \leq |x - y|</math> pro absolutní hodnoty v reálných a komplexních číslech,

\(\left| \|x\| - \|y\| \right| \leq \|x - y\|</math> pro normované vektorové prostory a

\(\left| d(x, y) - d(x,z) \right| \leq d(y,z)</math> pro metrické prostory.

Z těchto tvarů už plyne, že absolutní hodnota, norma i funkce \(d(x, \cdot)</math> jsou Lipschitzovské, tedy i spojité funkce.