Distributivita
Z Multimediaexpo.cz
Distributivita je v matematice, zejména v algebře, vlastnost binární operace vůči jiné binární operaci, říkající, že můžeme tuto operaci distribuovat přes jinou operaci. Je zobecněním běžné distributivity násobení vůči sčítání čísel, kdy můžeme roznásobit sčítání.
Obsah |
Definice
Binární operace \(*\) je na množině \(S\) distributivní vůči operaci \(+\), jestliže pro každé \(x\), \(y\) a \(z\) v \(S\) platí:
- \(x * (y + z) = (x * y) + (x * z)\);
- \((y + z) * x = (y * x) + (z * x)\).
Příklady distributivity
Nejznámější příklady distributivní binárních operací je násobení (a ⋅ b) vůči sčítání (a + b) reálných čísel.
- 7 ⋅ (3 + 2) = 7 ⋅ 5 = 35 = 21 + 14 = (7 ⋅ 3) + (7 ⋅ 2)
Další ukázky distributivních binárních operací jsou například: násobení vůči sčítání komplexních čísel, násobení vektorů skalárem vůči jejich sčítání vektorů na vektorových prostorech, umocňování vůči násobení reálných nebo komplexních čísel.
Zvláštním příkladem je distributivita v Booleově algebře, neboť zde jsou dvě operace distributivní vůči sobě navzájem:
- \( x \lor (y \land z) = (x \lor y) \land (x \lor z) \);
- \( x \land (y \lor z) = (x \land y) \lor (x \land z) \).
Související články
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |